2017 + Honda Motorcycle & CBR Sport Bike Technology Patents Filed

OEM Honda Powersports Parts Discount Code - Motorcycles, ATV, SxS, UTV, Scooters, Side by Side

New Patents Filed | 2017 & 2018 Honda Motorcycle Concept / Prototype Technology Coming Soon?

We’re only into January of 2016 and I’ve gotten wind of some cool patents Honda just filed last month for the future to use on their motorcycles! What kind of new technology are we talking about? The entire patent documents are below if you’d like to get an idea into the minds of the true geniuses at Honda that come up with the latest and greatest motorcycle technology!

Falcon Ridge LED Lights ATV / UTV Ad | High Lifter

2017 & 2018 Honda Motorcycle / CBR Sport Bike Leaked Patent & Electronic Technology

 

Honda has dubbed this new piece of technology they filed a patent for as the “Live Computer Instructor System”.

What does the Honda Live Computer Instructor System do? It takes a host of electronic hardware and software like gyroscopes, an accelerometer, steering sensors, lean angle sensors, a GPS locator, a speed sensor and a video camera to create a fully interactive system that acts as an on-board instructor / coach to be there for you and offer real-time advice, tips, etc. It gathers all of the data and processes it to suggest how much you should twist the throttle, the best line to take for that corner etc. Everything we would typically have to wait until after a ride to get advice on from an instructor or coach or even info that we would normally never receive as many just “wing it” when it comes to learning how to ride.

2017 & 2018 Honda Motorcycle / CBR Sport Bike Leaked Patent & Electronic Technology

Going by the documents below, we’re not sure what Honda has their mind-set on when it comes to how it’ll be used. Will it be used on certain learner motorcycles to help teach people that are learning what is “right and wrong” in real-time? Will it be used on bikes like the New 2017 CBR250RR that all the rumors are floating around about? Or the New 2017 CBR1000RR & 2017 CBR600RR and similar sport / race bikes to better help those when riding and or racing on the track? Will it only be used on Honda’s race bikes in MotoGP, World SuperBike etc? Or could we see it on more touring and cruiser orientated models like the 2017 Gold Wing? Adventure bikes like the Africa Twin and VFR1200X? Smaller cc sport models that aren’t true “supersport” bikes like the CBR500R, CBR300R, CBR650F? The possibilities are endless when it comes to what future motorcycles Honda could throw this technology on as no matter the bike whether it be a “learners / beginner” bike to the more advance motorcycles that are on the market we could all learn something no matter how good we think we are.

Some may think it’ll be another piece of distracting electronics slapped in front of us but there is an argument on that point though. Imagine having real-time advice and or tips on what you just did wrong and same for if you just did something correctly. Instead of just wondering whether or not you did something correctly or were way off base – you won’t have to ponder on that and never know the answer and or wait for an instructor etc to give their input.


Want to see more Patent Documents and or possible new 2017 / 2018 and beyond motorcycle technology? Click “Like” and or Share as that lets me know you want to see more…


Will we see this technology used in some of the 2017 or 2018 Honda motorcycle model lineup? Only time will tell… Personally, this is the kind of stuff that has me excited to see what the future holds for motorcycling – well as long as we stay away from electric motorcycles haha.

2017 & 2018 Honda Motorcycle / CBR Sport Bike Leaked Patent & Electronic Technology

What do you think? Will it be something that’s overall a very helpful piece of technology or just some more electronic gadgets to distract riders from everything else going on in front of us?

I could speculate and talk all day long on what and or how this technology could be used but I won’t bore you with anymore of my ramblings. Instead, take a moment and check out the patent documents below and come up with your take on it all.

TRAINING SYSTEM AND METHOD FOR MOTORCYCLE RIDING

ABSTRACT

A training system for a motorcycle has a plurality of sensor monitoring operating conditions of the motorcycle. A navi- gation system indicates a location and a route traveled by the motorcycle. A processor is coupled to the plurality of sensors and the navigation system. A memory is coupled to the pro- cessor. The memory stores program instructions that when executed by the processor, causes the processor to: analyze the operating conditions monitored by the plurality of sensors along the route; and provide feedback to increase a riding performance when re-riding the route.

TECHNICAL FIELD

[0001] The present application generally relates to motor-cycle riding, and, more particularly, to a system and methodthat uses real time data for generating feedback to assist a motorcycle rider in riding performance.

BACKGROUND

[0002] Many novice motorcyclists may not realize the skill it may take to ride a motorcycle. In general, the motorcyclist should try and maintain proper balanced in order to operate the motorcycle. This skill may be more apparent when trying to make a turn. Many novice motorcyclists may not know how to set a proper lean angle of the motorcycle and their body as they go around a corner. When the motorcycle goes around a curve, a centrifugal force may be generated horizontally. This force may be a function of the weight of the motorcycle and driver, the radius of the curve and the velocity of the motor- cycle itself. If the motorcyclist takes the curve too fast, and/or at too step of an angle, the motorcyclists may fail to properly navigate the curve.

[0003] As with any skill, the more one practices and per-forms the activity, the more proficient one may become. Thus, the more one pays attention to one’s technique and performance, the more proficient, the motorcyclist may become at operating the motorcycle. Motorcyclists that may want to become more advanced riders should pay attention to the roll angle or motorcycle tilt as they ride as well as other characteristics such as speed, terrain and similar operating conditions.

[0004] In the past, there may have been various devices that measure the lean angle of a motorcycle as it travels. Devices may have been used to measure the speed of the motorcycle, the lateral g-force of the motorcycle and acceleration of the motorcycle. However, in order to use the data gleaned from these various instruments, the motorcyclist may have to separately analyze the data from each measuring instrument and compare it to an ideal standard or some other standard that may prove useful to the motorcyclist. This may prove cumbersome to the motorcyclist and may prove difficult for any insight to be gained into the motorcyclist’s performance. It may well prove to be too complex to make comparisons without another device to make meaningful comparisons.

[0005] Therefore, it would thus be desirable to provide a system and method that overcome the above problems by using real time data to generate feedback to assist a motorcycle rider in riding performance.

SUMMARY

[0006] In accordance with one embodiment, a training system for a motorcycle is disclosed. The training system has a plurality of sensors monitoring operating conditions of the motorcycle. A navigation system indicates a location and a route traveled by the motorcycle. A processor is coupled to the plurality of sensors and the navigation system. A memory is coupled to the processor. The memory stores program instructions that when executed by the processor, causes the processor to: analyze the operating conditions monitored by the plurality of sensors along the route; and provide feedback to increase a riding performance when re-riding the route.

[0007] In accordance with one embodiment, a training system for a motorcycle is disclosed. The training system has a plurality of sensors monitoring operating conditions of the motorcycle. A navigation system indicates a location and a route traveled by the motorcycle. A processor is coupled to the plurality of sensors and the navigation system. A memory is coupled to the processor. The memory stores program instructions that when executed by the processor, causes the processor to: analyze the operating conditions monitored by the plurality of sensors along the route; and provide feedback based on the operating conditions analyzed to increase a riding performance when re-riding the route, wherein the feedback is at least one of providing feedback to adjust at least
one operating condition being monitored by the plurality of sensor or issue a warning prior to riding into a caution area on the route based on the operating conditions analyzed.

[0008] In accordance with one embodiment, a method to provide feedback for increasing a performance on a motorcycle is disclosed. The method comprises: monitoring operating conditions of a motorcycle by a plurality of sensors; indicating a location and a route traveled by the motorcycle by a navigation system; analyzing the operating conditions monitored by the plurality of sensors along the route; and providing feedback based on the operating conditions analyzed to increase a riding performance when re-riding the
route, wherein the feedback is at least one of providing feedback to adjust at least one operating condition being monitored by the plurality of sensor or issue a warning prior to riding into a caution area on the route based on the operating conditions analyzed.

BRIEF DESCRIPTION OF DRAWINGS

[0009] The present application is further detailed with respect to the following drawings. These figures are not intended to limit the scope of the present application but rather illustrate certain attributes thereof. [0010] FIG. 1 is side view of a vehicle implementing an exemplary system for training a motorcyclist in accordance
with one aspect of the present application;

[0011] FIG. 2 is a block diagram of the exemplary system for training a motorcyclist depicted in FIG. 1 in accordance with one aspect of the present application; and

[0012] FIG. 3 is an exemplary flowchart depicting a method for training a motorcyclist using the exemplary system depicted in FIG. 1 in accordance with one aspect of the present application.

DESCRIPTION OF THE APPLICATION

[0013] The description set forth below in connection with the appended drawings is intended as a description of pres- ently preferred embodiments of the disclosure and is not intended to represent the only forms in which the present disclosure can be constructed and/ or utilized. The description sets forth the functions and the sequence of steps for con- structing and operating the disclosure in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions and sequences can be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of this disclosure.

[0014] Referring to FIG. 1, an exemplary vehicle 1 0 may be seen. In the present embodiment, the vehicle 10 may be a motorcycle 1oA. The motorcycle 1oA may be equipped with a system 12. The system 12 may be used to monitor and record real time data associated with riding conditions of the motorcycle 1oA. The system 12 may use the real time data for creating feedback to assist a rider of the motorcycle 1oA in riding performance.

[0015] Referring to FIGS. 1 and 2, the system 12 may have one or more devices 14 for monitoring data. The data moni- tored by the devices 14 may be data associated with riding conditions of the motorcycle 1oA while the motorcycle 1oA is being ridden. The devices 14 may be one or more gyroscopes 14A or similar devices to monitor a tilt angle of the motorcycle 1oA and or body lean of the rider, an accelerometer 14B or similar device to monitor g-force acceleration, a steering angle sensor 14C or similar device to monitor a steering angle of the motorcycle 1oA, a velocity sensor 14D
or similar devices to monitor a speed of the motorcycle 1oA, a Global Positioning Satellite device 1413 or similar devices to indicate a location of the motorcycle 1oA, a camera 14F or similar devices to record still pictures or videos, and other like devices that may be used to monitor different riding conditions of the motorcycle 1oA while being ridden.

[0016] The system 12 may include a user interface 16. The user interface 1 6 may be used to enter information into and/or review data monitored by the system 12. The user interface 16
may be a separate user interface or may be a GPS interface forming part of the GPS device 14E. For example, the user interface 16 may be buttons, switches, keyboard, trackball,
scroll wheel or similar device used to enter data. In accordance with one embodiment, a display unit 24, either a standalone unit or forming part of the GPS device 14E, may show an alphanumeric keyboard and the user interface 16 may be used to select and enter a desired letter and or number. Alternatively, the display unit 24 may be a touch screen display thereby functioning as a display unit 24 and the user interface

16.[0017] The system 10 may have a recording device 18. The recording device 18 may be used to store data related to operation of the motorcycle 1oA. The recording device 18 may be coupled to the devices 14. The data monitored by the devices 14 as the motorcycle 1oA is being ridden may be sent to the recording device 18 for storage.

[0018] The system 12 may have a processor 20. The data monitored by the different devices 14 may be transmitted to the processor 20. The processor 20 may be used to analyze the data monitored by the different devices 14 and may provide feedback to the motorcyclist.

[0019] A “processor,” as used herein, processes signals and performs general computing and arithmetic functions. Sig- nals processed by the processor 20 can include digital signals, data signals, computer instructions, processor instructions, messages, a bit, a bit stream, or other means that can be received, transmitted and/ or detected. Generally, the processor 20 can be a variety of various processors including multiple single and multicore processors and co-processors and other multiple single and multicore processor and co-processor architectures. The processor can include various modules to execute various functions

[0020] The processor 20 may store a computer program or other programming instructions associated with a memory 26 to control the operation of the system 12 and to analyze the data received. The data structures and code within the software in which the present application may be implemented, may typically be stored on a non-transitory computer-readable storage. The storage may be any device or medium that may store code and/ or data for use by a computer system. The non-transitory computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing
code and/ or data now known or later developed. The processor 20 may comprise various computing elements, such as integrated circuits, microcontrollers, microprocessors, pro- grammable logic devices, etc., alone or in combination to perform the operations described herein.

[0021] The processor 20 may analyze the data monitored by the different devices 14 and may provide the motorcyclist with feedback during and/ or after a ride. The feedback may include indicating how one or more of the riding criteria being monitored by the devices 14 may be adjusted to improve the riding performance.

[0022] For example, by analyzing the data, the processor 20 may deter mine if the motorcyclist drives more aggressively at one portion of a roadway by analyzing data from the devices 14 such as the tilt and or slant, velocity, etc of the motorcycle 1oA. Warnings provided through a warning system 22 may be provided to the motorcyclist the next time the motorcyclist goes through the area as calculated by the GPS device 14E. The warning system 22 may include audible warnings, visual warnings or combinations of thereof. For example, the warning system 22 may display information on the display unit 24 or via warning lights. The display unit 24 may be part of the GPS device 14E or a separate display unit 24 unrelated to the GPS device 14E. Alternatively, the information may be audibly disclosed through a speaker system located on the motorcycle 1oA. The above listing is given as an example and should not be seen in a limiting manner.

[0023] The processor 20 may be used to calculate a predefined performance level from the various parameters which may be measured during each run. During an initial run, the data monitored by the different devices 14 may be analyzed to determine how the motorcyclist may optimize the run by modifying the current readings. For example, a location of a route may be noted and marked using the GPS device 14E of the system 12. The system 12 may monitor and record the rider’s body lean, steering angle and speed of the motorcycle 1oA and other riding data throughout the route. The monitored data may be analyzed to compare the actual run to an ideal optimized run using the physical limitations of the road- way, the motorcycle 1oA and/or the motorcyclist. When the motorcyclist makes another run through the same route and or section of the roadway, the system 12 may alert and provide date to the motorcyclist which may aid in optimizing motor- cyclist run. Thus, the system 12 may provide the motorcyclist with a calculated lean angle, steering angle, and speed, to aid in optimizing the run through the same route. The calculations may be based on the characteristics of the motorcyclist who performed the first run. The lean angle, steering angle, and speed, to aid in optimizing the run through the same route
may vary depending on the characteristics of the motorcyclist. For example, a heaver motorcyclist may have a smaller lean and steering angle than that of a lighter weight motorcyclist in order to optimize a run. In accordance with one embodiment, the user interface 16 may be used to enter different motorcyclist characteristics to see how the different motorcyclist characteristics affect the run. The motorcyclist may enter how changes in the motorcyclist weight, dexterity, or other motorcyclist characteristics may change the performance of the run.

[0024] The system 12 may provide real time feedback. The motorcyclist may find a previous selected course using the GPS device 14B and make a subsequent pass through the same course. As the motorcyclist makes another run through the same course as determined by the GPS device 14E, the system 12 may supply the motorcyclist with real time feedback. Vldeo and audio feedback during the sub sequent course run may enable the rider to improve his time. For example, the system 12 may provide the motorcyclist visual and or audio cues at the precise moment required in order to improve the motorcyclist’s performance. The system 12 may monitor a current reading and provide real time feedback to adjust a current reading to optimize the ride. For example, the system 12 may monitor a current lean angle of the motorcycle 1oA. The system 12 may alert the motorcyclist to adjust the current lean angle to a calculated lean angle and speed to aid in optimizing the run.

[0025] At any time after the processor 20 has analyzed the date, the motorcyclist, or other individuals, may see the analyzed data. The analyzed data may be reviewed by using the user interface 16. When reviewing data monitored by the system 12, the data being reviewed may be displayed on the display unit 24. Altematively, the data being reviewed may be audibly disclosed through a speaker system located on the motorcycle 1oA. The above listing is given as an example as similar devices to those disclosed above may be used to review the data.

[0026] Referring now to FIGS. 1-3, an exemplary embodiment of a method of using the system 12 may be disclosed. In block 100, the system 12 may generate data. In order to create the data, a motorcyclist may ride through a particular section of a roadway, highway, track, trail, or similar route, defining a course. The system 12 may record different riding param- eters through the devices 14. Once the data is generated, the data may be stored in the system 12 Via a recording device 18 or other mechanism as shown in block 102.

[0027] The data may be analyzed as shown in block 104. As the motorcycle 1oA is being ridden, the motorcycle 1oA may approaches a location, as indicated by the GPS device 1413, that has been previously ridden through and has recorded data that has been analyzed as shown in block 106. The system 12 may provide feedback to the motorcyclist as shown in block 108. The feedback may include indicating how one or more of the riding criteria being monitored by the devices 14 may be adjusted to improve the riding performance.

[0028] While embodiments of the disclosure have been described in terms of various specific embodiments, those skilled in the art will recognize that the embodiments of the disclosure may be practiced with modifications within the spirit and scope of the claims.

1. A training system for a motorcycle comprising:

a plurality of sensors monitoring operating conditions of the motorcycle;

a navigation system indicating a location and a route traveled by the motorcycle;

a processor coupled to the plurality of sensors and the navigation system; and

a memory coupled to the processor, the memory storing program instructions that when executed by the processor, causes the processor to:

analyze the operating conditions monitored by the plurality of sensors along the route; and

provide feedback based on the operating conditions analyzed to increase a riding performance when re-riding the route.

  1. The training system of claim 1, wherein the memory storing program instructions that when executed by the processor, causes the processor to provide feedback to adjust at least one operating condition being monitored by the plurality of sensor to increase riding performance.
  2. The training system of claim 1, wherein the memory storing program instructions that when executed by the processor, causes the processor to issue a warning prior to riding into a caution area on the route based on the operating conditions analyzed.
  3. The training system of claim 1, the memory storing program instructions that when executed by the processor, causes the processor to provide feedback in real time.
  4. The training system of claim 1, the memory storing program instructions that when executed by the processor, causes the processor to provide feedback in at least one of an audible or Visual mode.
  5. The training system of claim 1, comprising a storage device recording the operating conditions monitored by the plurality of sensors and an associated position of the route where the operating conditions were monitored.
  6. The training system of claim 1, comprising a user interface inputting information to review the operating conditions analyzed.
  7. The training system of claim 1, comprising a display screen showing visual feedback of a run recorded by a camera and analyzed.
  8. The training system of claim 1, wherein the plurality of sensors comprises:

at least one gyroscope monitoring a tilt angle of the motorcycle and a body lean of a rider of the motorcycle;

an accelerometer monitoring g-force acceleration;

a steering angle sensor monitoring a steering angle of the motorcycle; and
a velocity sensor monitoring a speed of the motorcycle.

  1. The training system of claim 1, comprising a camera capturing visual data along the route.
  2. A training system for a motorcycle comprising:

a plurality of sensors monitoring operating conditions of the motorcycle;

a navigation system indicating a location and a route traveled by the motorcycle;

a processor coupled to the plurality of sensors and the navigation system; and

a memory coupled to the processor, the memory storing program instructions that when executed by the processor, causes the processor to:

analyze the operating conditions monitored by the plurality of sensors along the route; and

provide feedback based on the operating conditions analyzed to increase a riding performance when re-riding the route, wherein the feedback is at least one of providing feedback to adjust at least one operating condition being monitored by the plurality of sensor or issue a warning prior to riding into a caution area on the route based on the operating conditions analyzed.

  1. The training system of claim 11, the memory storing program instructions that when executed by the processor, causes the processor to provide feedback in real time.

 

  1. The training system of claim 11, the memory storing program instructions that when executed by the processor, causes the processor to provide feedback in at least one of an audible or visual mode.
  2. The training system of claim 11, comprising a storage device recording the operating conditions monitored by the plurality of sensors and an associated position of the route where the operating conditions were monitored.
  3. The training system of claim 11; comprising a user interface inputting information to review the operating conditions analyzed.
  4. The training system of claim 11; wherein the plurality of sensors comprises:

at least one gyro scope monitoring a tilt angle of the motorcycle and a body lean of a rider of the motorcycle;

an accelerometer monitoring g-force acceleration;

a steering angle sensor monitoring a steering angle of the motorcycle; and

a velocity sensor monitoring a speed of the motorcycle.

  1. The training system of claim 11; comprising a camera capturing visual data along the route.
  2. A method to provide feedback for increasing a performance on a motorcycle comprising:

monitoring operating conditions of a motorcycle by a plurality of sensors;

indicating a location and a route traveled by the motorcycle by a navigation system;

analyzing the operating conditions monitored by the plurality of sensors along the route; and

providing feedback based on the operating conditions analyzed to increase a riding performance when re-riding the route, wherein the feedback is at least one of providing feedback to adjust at least one operating condition being monitored by the plurality of sensor or issuing a warning prior to riding into a caution area on the route based on the operating conditions analyzed.

  1. The method of claim 18; comprising providing feedback in real time.
  2. The method of claim 18; comprising providing feedback in at least one of an audible or visual mode.

United States Patent Application Publication (10) Pub. No.: US 2015/0364061 A1

KUROSAWA et al.

Applicants: FUMINOBU KUROSAWA, SAN
JOSE, CA (US); DANIEL
BEHRENDT, ATHERTON, CA (US)

Inventors: FUMINOBU KUROSAWA, SAN
JOSE, CA (US); DANIEL
BEHRENDT, ATHERTON, CA (US)

Honda Accessory Discount Code for Motorcycles, ATV, SxS, UTV, Scooters, Side by Side Models!

Menu